Search results for "tangent cone"
showing 8 items of 8 documents
The validity of the “liminf” formula and a characterization of Asplund spaces
2014
Abstract We show that for a given bornology β on a Banach space X the following “ lim inf ” formula lim inf x ′ ⟶ C x T β ( C ; x ′ ) ⊂ T c ( C ; x ) holds true for every closed set C ⊂ X and any x ∈ C , provided that the space X × X is ∂ β -trusted. Here T β ( C ; x ) and T c ( C ; x ) denote the β-tangent cone and the Clarke tangent cone to C at x. The trustworthiness includes spaces with an equivalent β-differentiable norm or more generally with a Lipschitz β-differentiable bump function. As a consequence, we show that for the Frechet bornology, this “ lim inf ” formula characterizes in fact the Asplund property of X. We use our results to obtain new characterizations of T β -pseudoconve…
Invariant approximation results in cone metric spaces
2011
Some sufficient conditions for the existence of fixed point of mappings satisfying generalized weak contractive conditions is obtained. A fixed point theorem for nonexpansive mappings is also obtained. As an application, some invariant approximation results are derived in cone metric spaces.
Rectifiability of the reduced boundary for sets of finite perimeter over RCD(K,N) spaces
2019
This paper is devoted to the study of sets of finite perimeter in RCD(K,N) metric measure spaces. Its aim is to complete the picture of the generalization of De Giorgi’s theorem within this framework. Starting from the results of Ambrosio et al. (2019) we obtain uniqueness of tangents and rectifiability for the reduced boundary of sets of finite perimeter. As an intermediate tool, of independent interest, we develop a Gauss–Green integration-by-parts formula tailored to this setting. These results are new and non-trivial even in the setting of Ricci limits. peerReviewed
Rectifiability of RCD(K,N) spaces via δ-splitting maps
2021
In this note we give simplified proofs of rectifiability of RCD(K,N) spaces as metric measure spaces and lower semicontinuity of the essential dimension, via -splitting maps. The arguments are inspired by the Cheeger-Colding theory for Ricci limits and rely on the second order differential calculus developed by Gigli and on the convergence and stability results by Ambrosio-Honda. peerReviewed
Illustrating the classification of real cubic surfaces
2006
Knorrer and Miller classified the real projective cubic surfaces in P(R) with respect to their topological type. For each of their 45 types containing only rational double points we give an affine equation, s.t. none of the singularities and none of the lines are at infinity. These equations were found using classical methods together with our new visualization tool surfex. This tool also enables us to give one image for each of the topological types showing all the singularities and lines.
On Limiting Fréchet ε-Subdifferentials
1998
This paper presents an e-sub differential calculus for nonconvex and nonsmooth functions. We extend the previous work by Jofre et all to the case where the functions are lower semicontinuous instead of locally Lipschitz.
A historical account on characterizations ofC1-manifolds in Euclidean spaces by tangent cones
2014
Abstract A historical account on characterizations of C 1 -manifolds in Euclidean spaces by tangent cones is provided. Old characterizations of smooth manifold (by tangent cones), due to Valiron (1926, 1927) and Severi (1929, 1934) are recovered; modern characterizations, due to Gluck (1966, 1968) and Tierno (1997) are restated. All these results are consequences of the Four-cones coincidence theorem due to [1] .
Characterization of the Clarke regularity of subanalytic sets
2017
International audience; In this note, we will show that for a closed subanalytic subset $A \subset \mathbb{R}^n$, the Clarke tangential regularity of $A$ at $x_0 \in A$ is equivalent to the coincidence of the Clarke's tangent cone to $A$ at $x_0$ with the set \\$$\mathcal{L}(A, x_0):= \bigg\{\dot{c}_+(0) \in \mathbb{R}^n: \, c:[0,1]\longrightarrow A\;\;\mbox{\it is Lipschitz}, \, c(0)=x_0\bigg\}.$$Where $\dot{c}_+(0)$ denotes the right-strict derivative of $c$ at $0$. The results obtained are used to show that the Clarke regularity of the epigraph of a function may be characterized by a new formula of the Clarke subdifferential of that function.