Search results for "tangent cone"

showing 8 items of 8 documents

The validity of the “liminf” formula and a characterization of Asplund spaces

2014

Abstract We show that for a given bornology β on a Banach space X the following “ lim inf ” formula lim inf x ′ ⟶ C x T β ( C ; x ′ ) ⊂ T c ( C ; x ) holds true for every closed set C ⊂ X and any x ∈ C , provided that the space X × X is ∂ β -trusted. Here T β ( C ; x ) and T c ( C ; x ) denote the β-tangent cone and the Clarke tangent cone to C at x. The trustworthiness includes spaces with an equivalent β-differentiable norm or more generally with a Lipschitz β-differentiable bump function. As a consequence, we show that for the Frechet bornology, this “ lim inf ” formula characterizes in fact the Asplund property of X. We use our results to obtain new characterizations of T β -pseudoconve…

Bump functionCombinatoricsClosed setApplied MathematicsPseudoconvexityMathematical analysisTangent coneBanach spaceSubderivativeLipschitz continuityAnalysisMathematicsAsplund spaceJournal of Mathematical Analysis and Applications
researchProduct

Invariant approximation results in cone metric spaces

2011

‎Some sufficient conditions for the existence of fixed point of mappings‎ ‎satisfying generalized weak contractive conditions is obtained‎. ‎A fixed‎ ‎point theorem for nonexpansive mappings is also obtained‎. ‎As an application‎, ‎some invariant approximation results are derived in cone metric spaces‎.

Control and OptimizationAlgebra and Number TheoryInjective metric spaceTangent coneMathematical analysis‎non normal cone‎54C60‎54H25‎‎orbitally continuous‎cone metric spacesIntrinsic metricConvex metric spaceFixed pointsMetric space‎46B40Dual cone and polar coneSettore MAT/05 - Analisi MatematicaMetric map‎invariant‎ ‎approximationInvariant (mathematics)Fixed points orbitally continuous invariant approximation cone metric spaces non normal cone.47H10AnalysisMathematics
researchProduct

Rectifiability of the reduced boundary for sets of finite perimeter over RCD(K,N) spaces

2019

This paper is devoted to the study of sets of finite perimeter in RCD(K,N) metric measure spaces. Its aim is to complete the picture of the generalization of De Giorgi’s theorem within this framework. Starting from the results of Ambrosio et al. (2019) we obtain uniqueness of tangents and rectifiability for the reduced boundary of sets of finite perimeter. As an intermediate tool, of independent interest, we develop a Gauss–Green integration-by-parts formula tailored to this setting. These results are new and non-trivial even in the setting of Ricci limits. peerReviewed

Mathematics - Differential Geometryset of finite perimeterreduced boundaryrectifiabilityMetric Geometry (math.MG)RCD spacemetriset avaruudetFunctional Analysis (math.FA)Mathematics - Functional AnalysisdifferentiaaligeometriaMathematics - Metric GeometryDifferential Geometry (math.DG)Gauss–Green formulaFOS: MathematicsMathematics::Metric Geometrytangent cone
researchProduct

Rectifiability of RCD(K,N) spaces via δ-splitting maps

2021

In this note we give simplified proofs of rectifiability of RCD(K,N) spaces as metric measure spaces and lower semicontinuity of the essential dimension, via -splitting maps. The arguments are inspired by the Cheeger-Colding theory for Ricci limits and rely on the second order differential calculus developed by Gigli and on the convergence and stability results by Ambrosio-Honda. peerReviewed

Pure mathematicsTangent coneOrder (ring theory)Differential calculusRCD spaceArticlesMathematical proofmetriset avaruudetMeasure (mathematics)matemaattinen analyysidifferentiaaligeometriaConvergence (routing)Metric (mathematics)Mathematics::Metric GeometryRectifiabilityEssential dimensionMathematicstangent cone
researchProduct

Illustrating the classification of real cubic surfaces

2006

Knorrer and Miller classified the real projective cubic surfaces in P(R) with respect to their topological type. For each of their 45 types containing only rational double points we give an affine equation, s.t. none of the singularities and none of the lines are at infinity. These equations were found using classical methods together with our new visualization tool surfex. This tool also enables us to give one image for each of the topological types showing all the singularities and lines.

Pure mathematicsmedia_common.quotation_subjectTangent coneAlgebraic surfaceGravitational singularityAffine transformationSingular point of a curveType (model theory)Infinitymedia_commonImage (mathematics)Mathematics
researchProduct

On Limiting Fréchet ε-Subdifferentials

1998

This paper presents an e-sub differential calculus for nonconvex and nonsmooth functions. We extend the previous work by Jofre et all to the case where the functions are lower semicontinuous instead of locally Lipschitz.

Statistics::Machine LearningPure mathematicsWork (thermodynamics)Tangent coneMathematics::Optimization and ControlDifferential calculusLimitingLipschitz continuityMathematics
researchProduct

A historical account on characterizations ofC1-manifolds in Euclidean spaces by tangent cones

2014

Abstract A historical account on characterizations of C 1 -manifolds in Euclidean spaces by tangent cones is provided. Old characterizations of smooth manifold (by tangent cones), due to Valiron (1926, 1927) and Severi (1929, 1934) are recovered; modern characterizations, due to Gluck (1966, 1968) and Tierno (1997) are restated. All these results are consequences of the Four-cones coincidence theorem due to [1] .

Tangent bundlePure mathematicsApplied MathematicsMathematical analysisTangent coneTangentManifoldVertical tangentTangent spacePushforward (differential)Mathematics::Differential GeometryTangent vectorAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Characterization of the Clarke regularity of subanalytic sets

2017

International audience; In this note, we will show that for a closed subanalytic subset $A \subset \mathbb{R}^n$, the Clarke tangential regularity of $A$ at $x_0 \in A$ is equivalent to the coincidence of the Clarke's tangent cone to $A$ at $x_0$ with the set \\$$\mathcal{L}(A, x_0):= \bigg\{\dot{c}_+(0) \in \mathbb{R}^n: \, c:[0,1]\longrightarrow A\;\;\mbox{\it is Lipschitz}, \, c(0)=x_0\bigg\}.$$Where $\dot{c}_+(0)$ denotes the right-strict derivative of $c$ at $0$. The results obtained are used to show that the Clarke regularity of the epigraph of a function may be characterized by a new formula of the Clarke subdifferential of that function.

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC][ MATH ] Mathematics [math]Computer Science::Computer Science and Game Theory021103 operations researchSubanalytic setTangent coneApplied MathematicsGeneral Mathematics010102 general mathematicsTangent coneMathematical analysis0211 other engineering and technologiesSubanalytic sets02 engineering and technologyCharacterization (mathematics)16. Peace & justice01 natural sciencesMSC: Primary 49J52 46N10 58C20; Secondary 34A60Clarke regularity[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]0101 mathematics[MATH]Mathematics [math]Mathematics
researchProduct